Berechnung des spezifischen realen Wasserverlustes q_{VR} mit "Mindestumfang" an "Eingangsdaten"

Betrachtungsjahr: 2021

Rohrnetzbezirk: ZV Harpfinger Gruppe, Hochzone

Netzeinspeisung Q _E		
Eigene Wassergewinnung	(in m³/a)	405.067
Fremdbezug	(in m³/a)	0
	4	
(1) Netzeinspeisung Q _E	(in m³/a)	405.067

Netzabgabe Q _A		
Abgabe zur Weiterverteilung an andere WVU Abgabe an Letztverbraucher	(in m ³ /a)	0
Haushalte und Kleingewerbe	(in m ³ /a)	358.148
Großabnehmer (gewerbliche Abnehmer, Industrie)	(in m³/a)	0
Sonstige (z.B. Löschwasser, ungemessene Abgaben (Schätzung),)	(in m ³ /a)	4.300
Wasserwerkseigenverbrauch (Aufbereitung, Spülungen,)	(in m³/a)	1.500
(2) Summe Netzabgabe Q _A	(in m³/a)	363.948

$(4) \circ (-1) \circ ($		VR	Re
$(4) \mathcal{Q}_{VR} = \mathcal{Q}_E - (\mathcal{Q}_A + \mathcal{Q}_{VS}). (1) - (3)$	41.119	$Q_E - (Q_A + Q_{VS})$: (1)-(3) (in m ³ /a)	

Realer Wasserverlust in Prozent der Netzeinspeisung		
Realer Wasserverlusten Q _{VR} / Netzeinspeisung Q _E * 100	(in %)	10,15

Rohrnetzlänge ohne Anschlussleitungen L_N	(in km)	100,0
---	---------	-------

Spezifischer realer Wasserverlust q _{VR}		
$q_{VR} = Q_{VR} / [8.760 \times L_N]$ ("Normaljahr")	(in m³/(h x km))	0,047
$q_{VR} = Q_{VR} / [8.784 \times L_N]$ ("Schaltjahr")	(in m³/(h x km))	0,047

Ermittlung der spezifischen Rohrnetzeinspeisung

Spezifische Rohrnetzeinspeisung		
Netzeinspeisung Q_{E} / Rohrnetzlänge ohne Anschlussleitungen L_{N}	(in $m^3/(km \times a)$)	4.051

Bereiche Versorgungsstruktur:	Spezifische Rohrnetzeinspeisung
Bereich 1 (großstädtisch)	> 15.000 m³/(km x a)
Bereich 2 (städtisch)	5.000 bis 15.000 m³/(km x a)
Bereich 3 (ländlich)	< 5.000 m³/(km x a)

Einstufung der Wasserverluste nach DVGW W 400-3-B1 (A) vom Sept. 2017

Spezifischer realer Wasserverlust (q_{VR}) in $m^3/(h x km)$			
Bereich 1 (großstädtisch)	Bereich 2 (städtisch)	Bereich 3 (ländlich)	Einstufung
< 0,10	< 0,07	< 0.05	niedrig
≥ 0,10 bis ≤ 0,20	≥ 0,07 bis ≤ 0,15	≥ 0,05 bis ≤ 0,10	mittel
> 0,20	> 0,15	> 0,10	hoch